部署流程分为四步关键操作:
- 环境准备:确保安装RKNPU2驱动,建议添加4GB交换分区避免内存不足
- 模型转换:将Paddle模型转为RKNN格式(需设置
ENABLE_RKNPU2_BACKEND=ON
和RKNN2_TARGET_SOC=RK3588
) - 部署执行:进入
demos/vision/detection/paddledetection/rknpu2/python
目录,运行python infer.py --model_file picodet_s_416_coco_lcnet_rk3588.rknn --config_file picodet_s_416_coco_lcnet/infer_cfg.yml --image input.jpg
- 性能调优:通过VisualDL监控耗时,调整batch_size等参数
注意事项:RK3588需使用特定编译选项,动态尺寸输入需在模型转换时配置。
本答案来源于文章《FastDeploy:快速部署AI模型的开源工具》