在RK3588等边缘设备部署AI模型时,内存不足是常见问题,可通过以下步骤解决:
1. 优化编译选项:在编译FastDeploy时限制任务并发数(如python setup.py build -j 4
),减少内存峰值占用。
2. 添加交换分区:为设备配置至少4GB Swap交换空间(具体步骤:
a) sudo fallocate -l 4G /swapfile
b) sudo chmod 600 /swapfile
c) 通过sudo swapon /swapfile
começar a usar
3. 启用模型量化:使用FastDeploy的W8A16或FP8量化功能(model.enable_quantization()
),可减少50%-75%内存占用。
4. 选择性编译:仅启用必要模块(如RKNPU2通过ENABLE_RKNPU2_BACKEND=ON
),避免无关后端的资源消耗。
Essa resposta foi extraída do artigoFastDeploy: uma ferramenta de código aberto para implantação rápida de modelos de IAO