📚 Structure of the database
Models/Catalog |
Description and content |
Axolotl |
A framework for fine-tuning language models |
Gemma |
Google's latest implementation of the Big Language Model |
– finetune-gemma.ipynb – gemma-sft.py – Gemma_finetuning_notebook.ipynb |
Fine-tuning notebooks and scripts |
LLama2 |
Meta's Open Source Large Language Model |
– generate_response_stream.py – Llama2_finetuning_notebook.ipynb – Llama_2_Fine_Tuning_using_QLora.ipynb |
Implementation and fine-tuning guidelines |
Llama3 |
Upcoming Meta Large Language Modeling Experiments |
– Llama3_finetuning_notebook.ipynb |
Initial fine-tuning experiments |
LlamaFactory |
A Framework for Training and Deployment of Large Language Models |
LLMArchitecture/ParameterCount |
Technical details of the model architecture |
Mistral-7b |
Mistral AI The 7 billion parameter model |
– LLM_evaluation_harness_for_Arc_Easy_and_SST.ipynb – Mistral_Colab_Finetune_ipynb_Colab_Final.ipynb – notebooks_chatml_inference.ipynb – notebooks_DPO_fine_tuning.ipynb – notebooks_SFTTrainer TRL.ipynb – SFT.py |
Integrated notebook for assessment, fine-tuning and reasoning |
Mixtral |
Mixtral's Expert Mixing Model |
– Mixtral_fine_tuning.ipynb |
Fine-tuning Realization |
VLM |
visual language model |
– Florence2_finetuning_notebook.ipynb – PaliGemma_finetuning_notebook.ipynb |
Visual language model implementation |
🎯 Module Overview
1. LLM architecture
- Explore the following model implementations:
- Llama2 (Meta's open source model)
- Mistral-7b (efficient 7 billion parameter model)
- Mixtral (expert hybrid architecture)
- Gemma (Google's latest contribution)
- Llama3 (upcoming experiment)
2. 🛠️ fine-tuning technology
- implementation strategy
- The LoRA (Low Rank Adaptation) approach
- Advanced Optimization Methods
3. 🏗️ model architecture analysis
- An in-depth study of the model structure
- Parameter calculation method
- Scalability Considerations
4. 🔧 Professional realization
- Code Llama for programming tasks
- Visual language modeling:
5. 💻 Practical applications
- Integrated Jupyter Notebook
- Response Generation Pipeline
- Reasoning Implementation Guide
6. 🚀 Advanced Themes
- DPO (Direct Preference Optimization)
- SFT (supervised fine tuning)
- Assessment methodology