📚 Structure of the database
| Models/Catalog | Description and content | 
| Axolotl | A framework for fine-tuning language models | 
| Gemma | Google's latest implementation of the Big Language Model | 
| – finetune-gemma.ipynb–gemma-sft.py–Gemma_finetuning_notebook.ipynb | Fine-tuning notebooks and scripts | 
| LLama2 | Meta's Open Source Large Language Model | 
| – generate_response_stream.py–Llama2_finetuning_notebook.ipynb–Llama_2_Fine_Tuning_using_QLora.ipynb | Implementation and fine-tuning guidelines | 
| Llama3 | Upcoming Meta Large Language Modeling Experiments | 
| – Llama3_finetuning_notebook.ipynb | Initial fine-tuning experiments | 
| LlamaFactory | A Framework for Training and Deployment of Large Language Models | 
| LLMArchitecture/ParameterCount | Technical details of the model architecture | 
| Mistral-7b | Mistral AI The 7 billion parameter model | 
| – LLM_evaluation_harness_for_Arc_Easy_and_SST.ipynb–Mistral_Colab_Finetune_ipynb_Colab_Final.ipynb–notebooks_chatml_inference.ipynb–notebooks_DPO_fine_tuning.ipynb–notebooks_SFTTrainer TRL.ipynb–SFT.py | Integrated notebook for assessment, fine-tuning and reasoning | 
| Mixtral | Mixtral's Expert Mixing Model | 
| – Mixtral_fine_tuning.ipynb | Fine-tuning Realization | 
| VLM | visual language model | 
| – Florence2_finetuning_notebook.ipynb–PaliGemma_finetuning_notebook.ipynb | Visual language model implementation | 
🎯 Module Overview
1. LLM architecture
- Explore the following model implementations:
- Llama2 (Meta's open source model)
- Mistral-7b (efficient 7 billion parameter model)
- Mixtral (expert hybrid architecture)
- Gemma (Google's latest contribution)
- Llama3 (upcoming experiment)
 
2. 🛠️ fine-tuning technology
- implementation strategy
- The LoRA (Low Rank Adaptation) approach
- Advanced Optimization Methods
3. 🏗️ model architecture analysis
- An in-depth study of the model structure
- Parameter calculation method
- Scalability Considerations
4. 🔧 Professional realization
- Code Llama for programming tasks
- Visual language modeling:
5. 💻 Practical applications
- Integrated Jupyter Notebook
- Response Generation Pipeline
- Reasoning Implementation Guide
6. 🚀 Advanced Themes
- DPO (Direct Preference Optimization)
- SFT (supervised fine tuning)
- Assessment methodology