错误预防方案
针对典型问题的防范措施:
- 梯度异常检测::
- existieren
trainer.py
aufstellengradient_norm_threshold: 1.0
- 启用自动缩放:
--auto-scale-lr
- Kontrolle
gradient_health_check.log
Protokolldatei
- existieren
- Hardware-Kompatibilität::
- in Bewegung sein
./scripts/hardware_check.sh
Überprüfung der Umgebung - 避免混用不同架构GPU
- NVLink连接优先于PCIe
- in Bewegung sein
- 超参数验证::
- ausnutzen
validate_config.py
检查参数合理性 - 关键参数警戒值:
- 学习率>0.001会触发警告
- batch_size超过VRAM80%自动调整
- ausnutzen
故障恢复机制
内置的防护措施:
- 每1000steps自动保存checkpoint
- 异常中断后可通过
--resume-from
Wiederaufnahme - 内存溢出时自动激活gradient checkpointing
Diese Antwort stammt aus dem ArtikelOpen-Reasoner-Zero: Open-Source-Plattform für großangelegtes Reasoning Reinforcement Learning TrainingDie