Overseas access: www.kdjingpai.com
Bookmark Us
Current Position:fig. beginning " AI Answers

How to use dots.llm1 for text generation and dialog tasks?

2025-08-20 223

Text Generation Steps

dots.llm1 specializes in generating coherent text for tasks such as article continuation:

  1. Prepare input text (e.g., technical documentation or problem description)
  2. Using Python code or Docker services
  3. Setting the max_new_tokens parameter controls the output length
  4. Checking the coherence and accuracy of the output

Dialogue task realization

With proper cue engineering, the model enables high-quality conversational functionality:

  • Sample code:
    messages = [{'role': 'user', 'content': 'Explaining the core MoE architectural principles.'}]
    input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors='pt')
    outputs = model.generate(input_tensor.to(model.device), max_new_tokens=200)
    result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
  • The temperature parameter can be adjusted to control the creativity of the response.
  • For Chinese conversations, specific prompt templates are recommended

Advanced Techniques

Taking advantage of its 32k ultra-long context, it can handle complex multi-round dialog scenarios. For specialized domain conversations, it is recommended to provide relevant knowledge as a contextual precursor first.

Recommended

Can't find AI tools? Try here!

Just type in the keyword Accessibility Bing SearchYou can quickly find all the AI tools on this site.

Top

en_USEnglish