Overseas access: www.kdjingpai.com
Bookmark Us

Knowledge Graph Studio (KGS) is an open source platform designed to simplify the process of creating and managing RAG-native knowledge graphs. The platform provides rule-based entity parsing, modular graph construction, flexible data ingestion, and API-first design to support developers via an SDK. Whether dealing with structured or unstructured data, Knowledge Graph Studio provides users with scalable and flexible solutions for experimental and large-scale applications. Built on a NoSQL database, the platform supports fast data retrieval and easy traversal of complex relationships, and is committed to becoming a database-agnostic solution.

WhyHow (Knowledge Graph Studio): open source platform for creating and managing knowledge graphs, RAG application native support-1

 

Function List

  • Rule-based entity resolution
  • Modular mapping construction
  • Flexible data ingestion
  • API-first design with SDK support
  • Support for structured and unstructured data
  • Scalable and flexible solutions
  • Fast Data Retrieval and Complex Relational Traversal
  • Support for multiple databases

 

Using Help

Installation process

  1. Cloning Warehouse:
   git clone git@github.com:whyhow-ai/knowledge-graph-studio.git
cd knowledge-graph-studio
  1. Install the dependencies:
   pip install .
  1. Developer Installation:
   pip install -e .[dev,docs]

Quick Start

  1. Preparation:
    • OpenAI API Key
    • MongoDB Account
    • Creating Projects and Clusters in MongoDB Atlas
  2. Configure environment variables:
   cp .env.sample .env

update.envvalues in the file:

   WHYHOW__EMBEDDING__OPENAI__API_KEY=<你的OpenAI API密钥>
WHYHOW__GENERATIVE__OPENAI__API_KEY=<你的OpenAI API密钥>
WHYHOW__MONGODB__USERNAME=<你的MongoDB用户名>
WHYHOW__MONGODB__PASSWORD=<你的MongoDB密码>
WHYHOW__MONGODB__DATABASE_NAME=main
WHYHOW__MONGODB__HOST=<你的MongoDB主机>
  1. Create databases and collections:
   cd src/whyhow_api/cli/
python admin.py setup-collections --config-file collection_index_config.json
  1. Create user and API keys:
   python admin.py create-user --email <你的邮箱地址> --openai-key <你的OpenAI API密钥>
  1. Start the API server:
   uvicorn src.whyhow_api.main:app

Using the SDK

  1. Install the Python SDK:
   pip install whyhow
  1. Configure the WhyHow client:
   from whyhow import WhyHow
client = WhyHow(api_key='<你的WhyHow API密钥>', base_url="http://localhost:8000")
  1. Create workspaces and maps:
   workspace = client.workspaces.create(name="Demo Workspace")
chunk = client.chunks.create(workspace_id=workspace.workspace_id, chunks=[Chunk(content="示例内容")])
triples = [Triple(head=Node(name="示例节点", label="示例标签"), relation=Relation(name="示例关系"), tail=Node(name="示例尾节点", label="示例尾标签"), chunk_ids=[c.chunk_id for c in chunk])]
graph = client.graphs.create_graph_from_triples(name="Demo Graph", workspace_id=workspace.workspace_id, triples=triples)
  1. Query Mapping:
   query = client.graphs.query_unstructured(graph_id=graph.graph_id, query="示例查询")

Using Docker

  1. Build the mirror image:
   docker build --platform=linux/amd64 -t kg_engine:v1 .
  1. Run the image:
   docker run -it --rm -p 1234:8000 kg_engine:v1
0Bookmarked
0kudos

Recommended

Can't find AI tools? Try here!

Just type in the keyword Accessibility Bing SearchYou can quickly find all the AI tools on this site.

Top

en_USEnglish