Overseas access: www.kdjingpai.com
Bookmark Us
Current Position:fig. beginning " AI Answers

How can developers deploy the Qwen-Image-Edit model locally via Python code?

2025-08-20 51

Development of integrated solutions

There are three key phases of technology deployment:

environmental preparation

  • Install Python 3.8+ and CUDA 11.7 (required for GPU acceleration)
  • Dependency library installation command:
    pip install torch transformers diffusers accelerate

Core Code Implementation

Sample code showing key parameter configuration:

pipeline = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=torch.float16)
pipeline.to("cuda")
inputs = {
    "image": Image.open("input.jpg"),
    "prompt": "将沙发材质改为真皮",
    "true_cfg_scale": 7.0,  # 控制修改强度(3-10)
    "negative_prompt": "模糊,低质量",  # 排除不想要的效果
    "num_inference_steps": 30
}

Optimization Recommendations

  • Batch mode: use torch.DataLoader acceleration for large number of images
  • Memory management: use pipe.enable_model_cpu_offload() to relieve video memory pressure
  • Quantitative Deployment: Add load_in_8bit=True parameter for video memory optimization

Recommended

Can't find AI tools? Try here!

Just type in the keyword Accessibility Bing SearchYou can quickly find all the AI tools on this site.

Top

en_USEnglish