Overseas access: www.kdjingpai.com
Bookmark Us
Current Position:fig. beginning " AI Answers

How can I optimize the answer accuracy of my RAG system?

2025-08-28 1.5 K
Link directMobile View
qrcode

Background to the issue

Rankify's modular design and rigorous evaluation process dramatically improves the "illusion" problem that retrieval-enhanced generation (RAG) systems often face when the generated content does not match the retrieved document.

Implementation steps

  • Data preparation::
    1. Select domain-adapted datasets:
      Dataset("nq-dev").download()
    2. Document preprocessing ensures uniform formatting
  • skill set::
    1. Semantic search using Contriever (avoiding keyword limitations)
    2. Contextual reordering using RankGPT (considering inter-document associations)
    3. Configure the LLaMA-3 generator:
      Generator("meta-llama/Llama-3.1-8B")
  • Evaluation Optimization::
    • adoptionmetrics.calculate_generation_metrics()Calculating EM scores
    • pass (a bill or inspection etc)n_docsNumber of reference documents for parameter tuning (5-10 recommended)

best practice

Empirical tests show that the three-phase scheme combining ColBERT search + MonoT5 reordering + GPT-4 generation can achieve an accuracy of 78.31 TP3T on the HotPotQA dataset, which is 221 TP3T higher than the baseline.

Recommended

Can't find AI tools? Try here!

Just type in the keyword Accessibility Bing SearchYou can quickly find all the AI tools on this site.

Top