Resource Optimization Solution for Local Deployment of Qwen3
For different hardware environments, you can optimize the local resource usage of Qwen3 in the following ways:
- Model Selection Strategy::
- Conventional PC: Select Qwen3-4B or Qwen3-8B intensive modeling
- High-performance workstations: using the Qwen3-30B-A3B MoE model (only 3 billion parameters activated)
- Deployment tool optimization::
- Recommended
Ollama
maybellama.cpp
Quantitative deployment - pass (a bill or inspection etc)
vLLM
Implement dynamic batch processing and memory sharing
- Recommended
- Quantitative compression techniques::
- utilization
LMStudio
Tools for 4bit/8bit quantization - Adopting an expert group loading strategy for MoE models
- utilization
- Operational parameter tuning::
- Limit the maximum number of tokens (
max_new_tokens=2048
) - Turning off Thinking Mode in Simple Tasks (
enable_thinking=False
)
- Limit the maximum number of tokens (
Examples of specific implementations:
# 使用Ollama运行量化模型 ollama run qwen3:4b --quantize q4_0 # 在Python中限制显存使用 device_map = {"": "cpu"} # 强制使用CPU模式
This answer comes from the articleQwen3 Released: A New Generation of Big Language Models for Thinking Deeply and Responding FastThe