Overseas access: www.kdjingpai.com
Bookmark Us
Current Position:fig. beginning " AI Answers

How to improve the search accuracy and efficiency of the RAG system?

2025-09-09 1.8 K

Methods to enhance the retrieval effectiveness of RAG systems

Using Simba improves retrieval in three dimensions:

  • model optimization: high performance embedding models such as BAAI/bge-base-en-v1.5 can be selected in config.yaml
  • Vector Storage Optimization: Support FAISS and other efficient vector databases, set collection_name to manage different knowledge collections.
  • parameter tuning: Adjust the k value of retrieval section to control the number of results returned (default 5 chunks).

Implementation Steps:

  1. Modify llm configurations before running on the backend to choose the appropriate OpenAI or Ollama model
  2. Set the appropriate chunk_size (default 512) and chunk_overlap (default 200)
  3. GPU acceleration can be specified when deploying via Docker-compose (change device parameter to cuda)
  4. Regularly test retrieval time-consumption and accuracy via the /api/v1 interface

Recommended

Can't find AI tools? Try here!

Just type in the keyword Accessibility Bing SearchYou can quickly find all the AI tools on this site.

Top


Fatal error: Uncaught wfWAFStorageFileException: Unable to save temporary file for atomic writing. in /www/wwwroot/www.kdjingpai.com/wp-content/plugins/wordfence/vendor/wordfence/wf-waf/src/lib/storage/file.php:34 Stack trace: #0 /www/wwwroot/www.kdjingpai.com/wp-content/plugins/wordfence/vendor/wordfence/wf-waf/src/lib/storage/file.php(658): wfWAFStorageFile::atomicFilePutContents() #1 [internal function]: wfWAFStorageFile->saveConfig() #2 {main} thrown in /www/wwwroot/www.kdjingpai.com/wp-content/plugins/wordfence/vendor/wordfence/wf-waf/src/lib/storage/file.php on line 34