Overseas access: www.kdjingpai.com
Bookmark Us
Current Position:fig. beginning " AI Answers

How to avoid common misconfigurations in reinforcement learning training?

2025-09-05 1.5 K

Error prevention programs

Preventive measures for typical problems:

  • Gradient anomaly detection::
    1. existtrainer.pyset up ingradient_norm_threshold: 1.0
    2. Enable autoscaling:--auto-scale-lr
    3. controlgradient_health_check.loglog file
  • hardware compatibility::
    • (of a computer) run./scripts/hardware_check.shVerification Environment
    • Avoid mixing GPUs of different architectures
    • NVLink connectivity prioritized over PCIe
  • Hyperparameter validation::
    • utilizationvalidate_config.pyChecking the rationality of parameters
    • Key parameter alert values:
      • Learning rate > 0.001 triggers a warning
      • batch_size exceeds VRAM80% auto-adjustment

Failure recovery mechanisms

Built-in protection:

  1. Auto-save checkpoints every 1000steps
  2. Abnormal interruptions can be followed by--resume-fromresumption
  3. Automatic activation of gradient checkpointing on memory overflow

Recommended

Can't find AI tools? Try here!

Just type in the keyword Accessibility Bing SearchYou can quickly find all the AI tools on this site.

Top