Overseas access: www.kdjingpai.com
Bookmark Us
Current Position:fig. beginning " AI Answers

How to apply MNN to realize real-time image effects processing in live streaming scenarios?

2025-09-10 2.5 K

MNN real-time image processing implementation scheme for live broadcasting scenarios

Live streaming scenarios are latency sensitive (need to be ≤50ms) and MNN's solution includes the following key technologies:

  • pipeline optimization1) Use 'MNN::CVProcess' module to process camera YUV data directly 2) Configure 'ImageProcess::Config' to realize hardware acceleration 3) Establish double buffer mechanism to avoid lagging.
  • Special effects model selection: Recommended to use MNN-converted StyleGAN-V or GFPGAN, with fast style migration enabled via the '-image_process' parameter
  • Resolution Adaptation: 1) Input layer configured with 'Interpreter::resizeTensor' to 540p 2) Output layer upsampled using 'MNN::Express::CV::resize'
  • Power consumption control: 1) Set 'BackendConfig::PowerMode' to Balanced 2) Dynamically adjust inference frequency to match FPS

Code Example:
MNN::CV::Matrix trans.
trans.postScale(1.0f/input_w, 1.0f/input_h);
config.filterType = MNN::CV::BILINEAR;
config.sourceFormat = MNN::CV::RGBA;
config.destFormat = MNN::CV::RGB;

Recommended

Can't find AI tools? Try here!

Just type in the keyword Accessibility Bing SearchYou can quickly find all the AI tools on this site.

Top