训练流程集成
- Model Preparation:确保专家并行逻辑正确划分
- interface call:引入
deep_ep_all_to_all
函数替换传统通信 - Precision Selection:指定FP8模式以降低显存消耗
关键代码示例
#include "deep_ep.h" void moe_train(float* input, float* output, int size) { deep_ep_all_to_all(input, output, size, FP8); }
Best Practice Recommendations
- 设备绑定: By
CUDA_VISIBLE_DEVICES
明确指定GPU - SM调节: Use
deep_ep_set_sm_limit()
适配硬件 - 重叠计算:启用hook机制实现通信-计算流水线
Performance Monitoring
建议监控以下指标:
- GPU利用率曲线
- 跨节点通信耗时占比
- 每迭代样本吞吐量
This answer comes from the articleDeepEP: An Open Source Tool to Optimize Communication Efficiency Specifically for MoE Models (DeepSeek Open Source Week Day 2)The