Overseas access: www.kdjingpai.com
Ctrl + D Favorites
Current Position:fig. beginning " AI Tool Library

CogVLM2: Open Source Multimodal Modeling with Support for Video Comprehension and Multi-Round Dialogue

2025-02-08 688

CogVLM2 是由清华大学数据挖掘研究组(THUDM)开发的开源多模态模型,基于 Llama3-8B 架构,旨在提供与 GPT-4V 相当甚至更优的性能。该模型支持图像理解、多轮对话以及视频理解,能够处理长达 8K 的内容,并支持高达 1344×1344 的图像分辨率。CogVLM2 系列包括多个子模型,分别针对不同任务进行了优化,如文本问答、文档问答和视频问答等。该模型不仅支持中英文双语,还提供了多种在线体验和部署方式,方便用户进行测试和应用。
Related information:How long can a large model understand a video? Smart Spectrum GLM-4V-Plus: 2 hours
CogVLM2:开源多模态模型,支持视频理解与多轮对话-1

Function List

  • graphic understanding: Supports the understanding and processing of high-resolution images.
  • many rounds of dialogue: Capable of multiple rounds of dialog, suitable for complex interaction scenarios.
  • Video comprehension: Supports comprehension of video content up to 1 minute in length by extracting keyframes.
  • Multi-language support: Support Chinese and English bilingualism to adapt to different language environments.
  • open source (computing): Full source code and model weights are provided to facilitate secondary development.
  • Online Experience: Provides an online demo platform where users can directly experience the model functionality.
  • Multiple Deployment Options: Supports Huggingface, ModelScope, and other platforms.

 

Using Help

Installation and Deployment

  1. clone warehouse::
   git clone https://github.com/THUDM/CogVLM2.git
cd CogVLM2
  1. Installation of dependencies::
   pip install -r requirements.txt
  1. Download model weights: Download the appropriate model weights as needed and place them in the specified directory.

usage example

graphic understanding

  1. Loading Models::
   from cogvlm2 import CogVLM2
model = CogVLM2.load('path_to_model_weights')
  1. process image::
   image = load_image('path_to_image')
result = model.predict(image)
print(result)

many rounds of dialogue

  1. Initializing the Dialog::
   conversation = model.start_conversation()
  1. hold a dialog::
   response = conversation.ask('你的问题')
print(response)

Video comprehension

  1. Load Video::
   video = load_video('path_to_video')
result = model.predict(video)
print(result)

Online Experience

Users can access the CogVLM2 online demo platform to experience the model's functionality online without local deployment.

Recommended

Can't find AI tools? Try here!

Just type in the keyword Accessibility Bing SearchYou can quickly find all the AI tools on this site.

inbox

Contact Us

Top

en_USEnglish