Overseas access: www.kdjingpai.com
Bookmark Us
Current Position:fig. beginning " AI Answers

如何在资源受限的边缘设备上部署Gaze-LLE?

2025-09-10 1.9 K

Lightweight solutions for edge device deployment

针对树莓派等边缘设备,可通过以下方案实现低资源部署:

  • Model quantification:使用PyTorch的torch.quantization将FP32模型转为INT8格式,模型体积可缩小4倍
  • 裁剪策略:将输入分辨率从416×416降至320×320,可减少35%计算量
  • Alternatives:若设备不支持ViT,可尝试重写解码器改用MobileNetV3等轻量backbone
  • 内存优化:启用PyTorch的checkpointing机制,前向传播时选择性保留中间结果

实测数据:在Jetson Xavier NX上,量化后的ViT-B模型内存占用从1.2GB降至380MB。建议搭配TensorRT进一步优化,可将帧率从3FPS提升至8FPS。对于极低配设备,可考虑仅处理关键帧(每秒2-3帧)来平衡性能。

Recommended

Can't find AI tools? Try here!

Just type in the keyword Accessibility Bing SearchYou can quickly find all the AI tools on this site.

Top

en_USEnglish