Analysis of efficiency bottlenecks
Data processing tasks are often limited:
1. Single-node processing speed
2. Mandate dependency management
3. Error retry mechanism
Optimization solutions
- Parallelized configuration of intelligences::
config = Config( max_parallel_agents=8, # 根据CPU核心数调整 task_timeout=3600 )
- Data Segmentation Strategy::
- Segmentation by file size (200MB per smartphone processed)
- Slicing by time range (suitable for timing data)
- Slicing by hash (ensures even distribution of data)
- State Persistence Scheme::
- Configuring Redis as a stateful storage backend
- utilization
@checkpoint
Decorator Key Steps - pass (a bill or inspection etc)
plan.get_state().resume()
Realization of breakpoint transfer
Typical ETL Workflow Example
task = """
1. 从S3读取CSV(分片处理)
2. 清洗:去重/填充缺失值
3. 转换:计算衍生字段
4. 写入Snowflake(批次提交)
"""
# 添加错误重试逻辑
config = Config(
retry_policy=ExponentialBackoff(max_retries=3)
)
This answer comes from the articlePortia AI: A Python Toolkit for Building Intelligent Automated WorkflowsThe