使用Unsloth进行高效微调包含以下关键操作流程:
- Model loading:使用标准transformer接口加载预训练模型,可指定上下文窗口等参数:
model = AutoModelForCausalLM.from_pretrained("unslothai/llama-3.3", context_window=89000)
- 训练配置:通过TrainingArguments设置核心参数,推荐启用动态量化:
training_args = TrainingArguments(
output_dir="./results",
quantization="dynamic_4bit",
per_device_train_batch_size=4
) - Start training:使用封装好的Trainer类启动训练过程,自动优化内存和计算资源:
trainer = Trainer(model, args=training_args, train_dataset=dataset)
trainer.train() - Model Export:支持多种工业标准格式,如HuggingFace格式:
model.save_pretrained("./finetuned_model")
项目提供的Jupyter notebooks包含完整的端到端示例,建议用户优先参考这些实战案例。
This answer comes from the articleUnsloth: an open source tool for efficiently fine-tuning and training large language modelsThe