Code retrieval for technical documentation requires special handling:
- Document Preprocessing::
- Ensure that code blocks are clearly identified in the PDF/TXT (e.g., ``wrapped'')
- Maintaining a standardized code comment format in GitHub repositories
- Pipeline Configuration::
- utilization
AgenticRAGPipeline
and setmax_steps=3
Implementing multiple rounds of context matching - lower
k=3
to improve code snippet retrieval accuracy
- utilization
- Query Optimization::
- The input question contains a specific function name/argument (e.g.
"pipeline.generate()的使用示例"
) - For high-frequency queries can be preset prompt templates to emphasize the output of the code
- The input question contains a specific function name/argument (e.g.
The empirical measurements show that the combination ofllama3
model and a temperature parameter of 0.8 allows for more deterministic code generation results.
This answer comes from the articleRAGLight: Lightweight Retrieval Augmentation Generation Python LibraryThe