Overseas access: www.kdjingpai.com
Bookmark Us
Current Position:fig. beginning " AI Answers

如何克服多GPU环境下大模型部署的显存分配难题?

2025-09-05 1.4 K

vLLM服务化部署方案

针对多GPU场景的核心解决策略:

  • Hardware Preparation Phase::
    • utilizationnvidia-smi确认各GPU空闲状态
    • pass (a bill or inspection etc)export CUDA_VISIBLE_DEVICES=0,1指定可用设备
  • 服务启动命令::
    vllm serve /model/路径 
    --tensor-parallel-size 2 
    --max-model-len 59968 
    --port 8000
    

    Key Parameter Description:

    • tensor-parallel-size:应与实际GPU数量一致
    • max-model-len:根据模型规模调整(32B模型建议≥59k)
  • emergency management::
    1. 出现OOM错误时,降低sample_size值
    2. increase--enforce-eager参数缓解显存碎片问题
    3. 监控工具推荐:gpustat或nvtop

该方案在2*A100环境下可稳定支持32B模型的实时推理。

Recommended

Can't find AI tools? Try here!

Just type in the keyword Accessibility Bing SearchYou can quickly find all the AI tools on this site.

Top

en_USEnglish