vLLM服务化部署方案
针对多GPU场景的核心解决策略:
- Hardware Preparation Phase::
- utilization
nvidia-smi确认各GPU空闲状态 - pass (a bill or inspection etc)
export CUDA_VISIBLE_DEVICES=0,1指定可用设备
- utilization
- 服务启动命令::
vllm serve /model/路径 --tensor-parallel-size 2 --max-model-len 59968 --port 8000
Key Parameter Description:
- tensor-parallel-size:应与实际GPU数量一致
- max-model-len:根据模型规模调整(32B模型建议≥59k)
- emergency management::
- 出现OOM错误时,降低sample_size值
- increase
--enforce-eager参数缓解显存碎片问题 - 监控工具推荐:gpustat或nvtop
该方案在2*A100环境下可稳定支持32B模型的实时推理。
This answer comes from the articleTPO-LLM-WebUI: An AI framework where you can input questions to train a model to output results in real timeThe



















