部署该项目需要分阶段完成环境配置,主要流程如下:
pre-positioning
- 基础环境:Python 3.8+、Node.js、Redis和PostgreSQL
- API密钥:必须的Gemini API Key(通过Google AI Studio获取),可选的LangSmith调试密钥
Installation steps
- clone warehouse::
git clone https://github.com/google-gemini/gemini-fullstack-langgraph-quickstart.git
- Configuration Keys:在backend目录创建.env文件写入API密钥
- Installation of dependencies::
- Rear end:
pip install .
- Front End:
npm install
- Rear end:
运行方案
- development model::
npm run dev
同时启动前后端 - Docker Deployment:通过docker-compose up构建容器化服务
特别注意:若使用数据持久化功能,需提前配置PostgreSQL连接字符串到.env文件。
This answer comes from the articleGemini Fullstack LangGraph: a full-stack application for intelligent research based on Gemini and LangGraphThe