Axolotl |
A framework for fine-tuning language models |
Gemma |
Google's latest implementation of the Big Language Model |
– finetune-gemma.ipynb – gemma-sft.py – Gemma_finetuning_notebook.ipynb |
Fine-tuning notebooks and scripts |
LLama2 |
Meta's Open Source Large Language Model |
– generate_response_stream.py – Llama2_finetuning_notebook.ipynb – Llama_2_Fine_Tuning_using_QLora.ipynb |
Implementation and fine-tuning guidelines |
Llama3 |
Upcoming Meta Large Language Modeling Experiments |
– Llama3_finetuning_notebook.ipynb |
Initial fine-tuning experiments |
LlamaFactory |
A Framework for Training and Deployment of Large Language Models |
LLMArchitecture/ParameterCount |
Technical details of the model architecture |
Mistral-7b |
Mistral AI The 7 billion parameter model |
– LLM_evaluation_harness_for_Arc_Easy_and_SST.ipynb – Mistral_Colab_Finetune_ipynb_Colab_Final.ipynb – notebooks_chatml_inference.ipynb – notebooks_DPO_fine_tuning.ipynb – notebooks_SFTTrainer TRL.ipynb – SFT.py |
Integrated notebook for assessment, fine-tuning and reasoning |
Mixtral |
Mixtral's Expert Mixing Model |
– Mixtral_fine_tuning.ipynb |
Fine-tuning Realization |
VLM |
visual language model |
– Florence2_finetuning_notebook.ipynb – PaliGemma_finetuning_notebook.ipynb |
Visual language model implementation |